Overview of assessment rationale for e-Road deployment

Sebastiaan Meijer, KTH
SP5 Leader

Final event
21-22.06.2018, Torino, Italy
Society-level deployment

1. Dynamic Wireless Power Transfer (DWPT) as an enabler of:
 – Full electrification of transport systems;
 – Modernisation of transport concepts.

2. Feasibility assessment:
 – Will DWPT deliver positive results for CO2 and €?
 – Include all effects over life cycle of vehicle plus infra;
 – Incentives for societal actors? Business case;
 – Alternative technologies.

3. Integration aspects as blockers:
 – Technical: Security, electric grids, supply chains;
 – Social: travel patterns.
Feasibility Assessment Methodology

1. **Initial assessment of major uncertainties:** Societal Feasibility Studies (WP52)
 - To steer the assessment work in:
 - (WP53) road infrastructure & impacts,
 - (WP54) integration of EVs to ICT and energy infrastructure and
 - with regards to (WP55) Business and Societal Consequences

2. **Integrated Life Cycle Analysis (CO2) and Life Cycle Costs (€):**
 - Alignment on deployment scenarios;
 - From road infrastructure (WP53) to vehicles (WP54) to system (WP55).

3. **Business case development:**
 - Including LCC, societal costs (CO2), etc.;
 - From perspective of infrastructure owner, vehicle owner, public administration;
 - Social costs benefit analysis for affecting factors.

4. **Relations with other technical systems:**
 - Road engineering: structural integrity, changes in maintenance;
 - Electrical grid and cyber-physical transporation systems.
Thank you!

Prof.dr.ir Sebastiaan Meijer
KTH Royal Institute of Technology, Sweden

smeijer@kth.se
+46(0) 8 790 8071