ICT needs and developments in FABRIC for on-road charging

Andrew Winder
ERTICO – ITS Europe

FABRIC Final Event, Turin, 21 June 2018
Overview

1. High level FABRIC ICT architecture for on-road charging
2. ICT needs and developments in FABRIC
High level FABRIC ICT architecture for on-road charging
Overview

1. High level ICT architecture for on-road charging
2. ICT needs and developments in FABRIC
 - User accounts, booking and billing
 - Dynamic routing for Electric Vehicles
 - Vehicle identification, charging lane access control and management/enforcement
 - ICT control of Wireless Power Transfer
 - Driving assistance while charging
 - Distribution Supply Operator (DSO) and grid management
User accounts, booking and billing

- Driver needs to create an account to use the charging infrastructure, which uses a list of users to identify eligibility.
- Account should allow driver to use charging stations of different operators and in different countries.
- A booking system would enable charging station operator to meet demand, but there should be a mechanism to take into account delays in reaching the charging infrastructure.
- Billing process needs to take into account the difference between the transmitted energy and the energy that is actually received by the electric vehicle.
Dynamic routing for Electric Vehicles

- Itinerary choice
- Charging infrastructure location and availability
- Low charge warning and routing to closest charging infrastructure
- Charging location choice
- Trip timing
- Saving preferences
- State-of-the-art for EV navigation systems from several vehicle manufacturers: display places that can be reached within range; warn driver if not possible to reach destination; display characteristics of charging stations
- Existing navigation systems meet the essential requirements: itinerary choice, locating infrastructure, route calculation
- Future requirement: real-time availability and pricing information
Vehicle identification, charging lane access control and management/enforcement

• Speed of identification & authorisation for dynamic charging should be much faster than for static charging
• Need a mechanism to take into account delays in reaching the charging infrastructure for booked vehicles
• Access to lane could be controlled, possibly with camera enforcement, or free access (all vehicles); the latter is proposed in FABRIC
• Physical configuration may depend on charging lane location (urban, motorway, etc.) and traffic speeds
• Detection can be by ANPR (Optical character recognition) or DSRC (v2i communication)
• Need standardisation of symbols on fixed and variable road signs to ensure understanding
ICT control of Wireless Power Transfer

- Smart metering:
 - may be energy transferred from the road (in which case off-vehicle metering would be required)
 - or energy received by the vehicle (on-board metering) – then needs to take account of energy loss
- Challenge for accurate metering: the higher the speeds and traffic densities, the more difficult it is to meter energy use accurately (affects billing)
- Emergency cut-off function, when energy transfer drops below a certain level of efficiency (due to driving behaviour or technical factors)
Driving assistance while charging

- Provision of information on approaching and activating charging, including pricing
- On-board unit: needs to minimise driver distraction
- Trajectory and speed advice (FABRIC did not look at automated driving, but this could be a future scenario)
- Prototype solutions developed and tested in France and Italy (see Grid Alignment Assistant System poster)
Distribution Supply Operator (DSO) and grid management

- To maintain distribution system balance, direct control strategies and intelligent distributed algorithms are needed.
- Optimisation strategies can be formulated, e.g. based on energy supply availability: smart pricing schemes that enable demand shifting.
- Load Balancing Algorithm developed and tested in simulation, to allow fair share for all vehicles using Dynamic Wireless Power Transfer (see Grid load balancing for DWPT poster).
Thank you!

Andrew Winder
Project Manager
ERTICO, Belgium

a.winder@mail.ertico.com