Discussion of assessment conclusions: where to go next?

Sebastiaan Meijer, KTH, Sweden
FABRIC SP5 Leader

Final event
21-22.06.2018, Torino, Italy
Certain in uncertainty

- Feasibility study deals with vast amounts of assumptions
- Interpret FABRIC results as guidance for future pathways, rather than predictions
- Scenarios are not exhaustive, but explored sensible deployment routes
- Focus on the sensitivity of positive/negative outcome for variations in parameters
General observations: benefits of DWPT

1. e-Road infrastructure is a relatively small CO2 factor in overall transport system (high utilisation required).
 - Battery size and manufacturing of vehicle are dominant.

2. Total transmission efficiency from grid to vehicle is very dominant.
 - Wired static charging and conductive dynamic power transfer have advantages.

3. Roads can be adapted, using current high-quality components.
 - Driving force for innovative and high-quality constructions
 - Some consequences for recycling / maintenance, but nationally regulated and solvable.

4. Electricity grids are not significantly blocking eRoad deployment.
 - May facilitate solar integration.
But who will pay? And who benefits?

1. Environmental benefits from CO2 reductions
 - Battery size reduction offsets infrastructure: public incentive!

2. But (Free-rangin) Chicken-Egg problem
 - Battery reduction only when use case of vehicle allows charging everywhere: no gradual adoption!
 - Static Wireless as step towards DWPT? look into standardisation processes! Not ready yet;

3. Travel demand and general incentives for general purpose vehicles are questionable.

4. Financially, major subsidies are required for general use cases.
 - Small stretches in urban bus deployment is viable. But: infrastructure is significant cost (low utilisation)
Feasibility

Yes, e-Roads with DWPT can be deployed technically.

No, this is unlikely to be the dominant answer to general electrification;
- Still, heavy vehicles have a clear advantage;
- DWPT for busses / freight can be used for cars, unlike overhead power.

Further development short term:
- Improve efficiency and power transfer capacity;
- EMF/EMC safety in urban environments.

Alternative technologies are competitive:
- Ultra-fast charging (€80k/unit vs 2-4 m€/km);
- Better / smaller batteries.

Further development long term towards MaaS / automated driving can increase attractiveness.
Thank you!

Prof.dr.ir Sebastiaan Meijer
KTH Royal Institute of Technology, Sweden
smeijer@kth.se
+46(0) 8 790 8071