YOU-JUN CHOI

Korea Automotive Technology Institute

Seiner Researcher

2016. 10. 14

Innovative EV and EV Charging Technologies in Korea
Strengthen the regulation of fuel efficiency to solve environmental problems in each region

’20 : USA 44.8mpg, Europe CO₂ 95g/km, China 5ℓ/100km

USA

CAFE (Corporate Average Fuel Economy)

- Fuel Efficiency Regulation
 - ’15: 36.2 mpg
 - ’20: 44.8 mpg
 - 24% upswing

- Penalty: $5.5 per 0.1mpg X Total Sales (ex) 1 Million Sales, $55M under 1mpg

Europe

CO₂ Emission

- Average Regulation
 - ’15: 130 g/km
 - ’20: 95 g/km
 - 27% tightened

- Penalty: €5–95 X Total Sales (Gradually progressive, €95 after ’19) (ex) 1 Million Sales, 95M exceeding 1g/km (after ’19)

China

Fuel Efficiency

- Average Regulation
 - ’15: 6.9 ℓ/100km
 - ’20: 5 ℓ/100km
 - 28% tightened

- Penalty: in the Review

’15 ’20
To achieve target, need new green technologies to emit less CO₂ for the road transportations

Korean Government is Tightening the National Target of CO₂ Emission Reduction

Greenhouse gas emission by sector

- Industry (50%)
- Transportation (17%)
- Waste (3%)
- etc (2%)
- Household (13%)
- Business, public (13%)

- 17% of greenhouse gas emission from road transportation

Presidential Commission on Green Growth Announced Target

- **1990**
 - CO₂ emission 298 million tons
- **2005**
 - CO₂ emission 594 million tons
- **2020 Forecast**
 - CO₂ emission 813 million tons
- **2020 Target**
 - CO₂ emission 569 million tons
Optional Regulation for Fuel Efficiency & Greenhouse Gas Emission

Upswing target

- Fuel efficiency: 18.6 km/ℓ ('16) → 24.3 km/ℓ ('20)
- CO₂ emission: 127 g/km ('16) → 97 g/km ('20)
- Gradual upswing from 2012
- Corporation could optionally meet a regulation
 - either fuel efficiency or gas emission
- Impose penalty on corporations that cannot fulfill
 either regulation
Domestic EV Dissemination Status

- Expanded to three models from the second half of 2013, added 2 models in 2014

* Mainly spread in Seoul (688), Jeju Island (360)

- Plan for disseminating EVs: ('16) 0.487 million \(\rightarrow\) ('20) 2 million

<table>
<thead>
<tr>
<th>Model</th>
<th>Manufacturer</th>
<th>Max. Speed</th>
<th>Battery Type</th>
<th>Battery Capacity</th>
<th>Driving Range per Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ray EV</td>
<td>KIA</td>
<td>130 km/h</td>
<td>Li-Polymer</td>
<td>16.4 kWh</td>
<td>91 km</td>
</tr>
<tr>
<td>SM3 EV</td>
<td>Renault-samsung</td>
<td>135 km/h</td>
<td>Li-Polymer</td>
<td>26.6 kWh</td>
<td>135 km</td>
</tr>
<tr>
<td>Spark EV</td>
<td>GM Korea</td>
<td>145 km/h</td>
<td>Li-Polymer</td>
<td>18.3 kWh</td>
<td>128 km</td>
</tr>
<tr>
<td>i3 EV</td>
<td>BMW Korea</td>
<td>150 km/h</td>
<td>Li-Polymer</td>
<td>21.3 kWh</td>
<td>132 km</td>
</tr>
<tr>
<td>Soul EV</td>
<td>KIA</td>
<td>145 km/h</td>
<td>Li-Polymer</td>
<td>27 kWh</td>
<td>148 km</td>
</tr>
<tr>
<td>Leaf EV</td>
<td>Nissan</td>
<td>140 km/h</td>
<td>Li-Polymer</td>
<td>24 kWh</td>
<td>132 km</td>
</tr>
<tr>
<td>Ionic EV</td>
<td>Hyundai</td>
<td>165 km/h</td>
<td>Li-Polymer</td>
<td>28 kWh</td>
<td>191 km</td>
</tr>
<tr>
<td>OLEV EV (WPT)</td>
<td>Dongwon</td>
<td>80 km/h</td>
<td>Li-Polymer</td>
<td>98.2 kWh</td>
<td>175.5 km</td>
</tr>
<tr>
<td>E-Primus EV</td>
<td>Hankuk Fiber</td>
<td>100 km/h</td>
<td>Li-Polymer</td>
<td>85.8 kWh</td>
<td>69.8 km</td>
</tr>
</tbody>
</table>
Domestic charging station dissemination status

- Charging station dissemination status: Normal 5,405, Fast 337

- Plan for disseminating fast charging system: (’16) 487ea → (’20) 1,400ea

Normal Charging Station

- **KODI-S**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/32A
 - Rated Power: 7.7kWh

- **Signet System**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/32A
 - Rated Power: 7kWh

- **LG CNS**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/30A
 - Rated Power: 7kWh

- **ChungAng Control**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/32A
 - Rated Power: 7kWh

- **PNE Solution**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/32A
 - Rated Power: 7kWh

- **Clean inlex**
 - Input Voltage: AC 220V
 - Output Voltage: AC 220V/32A
 - Rated Power: 7.7kWh

Fast Charging Station

- **KODI-S**
 - Input Voltage: AC 380V
 - Output Voltage: DC 50~450V/110A
 - Rated Power: 50kWh

- **PNE Solution**
 - Input Voltage: AC 380V
 - Output Voltage: DC 50~450V/110A
 - Rated Power: 50kWh

- **Signet System**
 - Input Voltage: AC 380V
 - Output Voltage: DC 500V/125A
 - Rated Power: 50kWh

- **Signet System**
 - Input Voltage: AC 380V
 - Output Voltage: DC 50~400V/125A
 - Rated Power: 50kWh
Location: Seoul(3ea), Sungnam(1ea), Daegu(3ea), Sunchun(2ea)

Unit cost: 313.1 won/kWh

Full charging cost: 8 dollars

Increasing 20 fast charging station at the telephone booth every year

Input voltage: AC 380V

Output voltage: DC 500V/125A

Rated power: 50kWh
Pilot Project of the WPT system in Korea – OLEV

- Construction of power supply infrastructure in Seoul Grand Park (Since July 2011)
 - Lunched the commercial OLEV tram service in 2011
 - Power supply infrastructure: Built on 372.5m, 16% of the 2.2km circular road

- Construction and operation of power supply infrastructure during Yeosu EXPO 2012
 - Power supply infrastructure: Built on 36m, 6% of the 600m road

- Construction commercial power supply infrastructure and operation of the on-campus OLEV shuttle service (since October 2012)
 - Power supply infrastructure: Built on 60m, 1.6% of the 3,760m road
 - Max. output: 240kW (320 hp), Max. efficiency: 80%, air-gap: 20cm, rated
 - First commercialized model

- Construction commercial power supply infrastructure and operation of the public OLEV bus service in Gumi (since October 2014)
 - Power supply infrastructure: Built on 24km, 0.6% of the 24km road
 - World 1st commercialized model in public road

- Construction commercial power supply infrastructure and operation of the public OLEV bus service in Sejong (since October 2014)
CT&T NEV eZone

- Power Factor: 0.99, THD: 3%
- Output Power: 3.3kW, DC 250~350V, 12A, 60kHz
- Efficiency: 90% @ 100mm Air gap
- Tolerance: X-Y (> ± 100mm), Z (> ± 5mm)
- Jeju Lotte Hotel (2set)
- Period: 2 years
Switching Freq.: 60kHz/85kHz

- Tolerance: X (± 100mm),
 y (± 50mm),
 Z (> ± 120mm)

- EMF: ICNIRP 1998

- Efficiency: < 90%
6.6kW WPT system applied on SOUL EV (under developing since 2015 for 3 years)

- Switching Freq. : 85kHz
- Tolerance : X (± 130mm), y (± 75mm) \(Z (> ± 160\sim120mm) \)
- Auto-tuning
- FOD (Foreign Object Detection)
- EMF : ICNIRP 1998
- Efficiency : > 90%
20kW WPT system applied on SM3 EV (under developing since 2016 for 3 years)

Follows J2836 SAE Standards
Continue to governmental support program for expanding market at early dissemination stage and support for commercialization of private service provider in parallel

<table>
<thead>
<tr>
<th>Policy</th>
<th>Necessary to EV and EV infrastructure dissemination related with national strategy such as reducing CO2, metropolitan traffic infrastructure with cooperation of governmental department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Necessary to establish detail supporting strategy based on predication of energy market and need with government energy policy</td>
</tr>
<tr>
<td>Support</td>
<td>National Support for Market Expansion of a EV and EV infrastructure (Subsidy , Tax Benefit)</td>
</tr>
</tbody>
</table>
| Infrastructure | Establish and Announce Roadmap for Battery Charging Infrastructure
 Promote the Spread of EV and EV infrastructure through a Private Enterprise step by step |
Thank you very much!

You-Jun CHOI, Senior Researcher
Korea Automotive Technology Institute (KATECH)
E-Mobility R&D Center
ychoi@katech.re.kr