Magnetizable concretes as a competitive and road integrable solution to increase the efficiency and/or coil distance for DWPT

Mauricio Esguerra
CEO and co-founder MAGMENT UG

 Agenda

1. Technology
 - Material properties
 • Physical
 • Electromagnetic
 - Processing
 • Dry premixing of recycled magnetic materials
 • Wet mixing for site-casting

2. Applications
 - Wireless power transmission (static & dynamic)
 - Power inductors & transformers
 - EMC
 - …and many others
Magnetizable Concretes

- **Composite** material based on a matrix loaded with magnetisable particles having a suitable size distribution.
 - **Grades:**
 - Magnetic Cement (MC) in a special cement matrix
 - Magnetic Asphalt (MA) in a special bitumen matrix
 - **Features:**
 - Very high magnetisable particle filling (up to 95 wt-%)
 - Highest magnetic permeability for a composite material
 - Very competitive magnetic material (filler obtained by recycling)
 - Robust material while fully integrable into existing structures
 - Rugged magnetic structures of unlimited size
 - Focus LF magnetic fields and absorbs HF/VHF/UHF radiation
 - **IP:** covered by international patents in all target markets
Material Properties MC40

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial permeability</td>
<td>μ_i</td>
<td></td>
<td>$40 \pm 10%$</td>
</tr>
<tr>
<td>Curie-Temperature</td>
<td>T_C</td>
<td>°C</td>
<td>> 210</td>
</tr>
<tr>
<td>Resistivity</td>
<td>ρ</td>
<td>[Ω m]</td>
<td>20</td>
</tr>
<tr>
<td>Density</td>
<td>γ</td>
<td>[kg/m³]</td>
<td>3750</td>
</tr>
<tr>
<td>Relative core losses</td>
<td>P_V</td>
<td>[kW/m³]</td>
<td>300</td>
</tr>
<tr>
<td>Specific heat</td>
<td>c_p</td>
<td>[J/kg K]</td>
<td>700</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>λ</td>
<td>[W/mK]</td>
<td>3</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>E_c</td>
<td>[MPa]</td>
<td>25000</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>f_c</td>
<td>[MPa]</td>
<td>20</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>f_t</td>
<td>[MPa]</td>
<td>2</td>
</tr>
</tbody>
</table>

Approach to flux density saturation over applied magnetic field

Normalized impedance vs frequency for noise radiation absorption
Processing 1

- Magnetisable particles are obtained through defined recycling and processing of scrap magnetic materials

- Dry premixing with special cement or bitumen for ready-to-use concrete

MAGMENT concretes require defined separation of scrap residue and electronic parts
Processing 2

- In-situ wet mixing of premixed concrete with conventional cement mixer equipment

- Automatic or manual site-casting with usual curing times for cement or asphalt concretes
Wireless Power Transmission (WPT) 1

Efficiency vs. magnetic permeability of the primary coil substrate for different distances to the pick-up coil
Magnetic field distribution for different coil distances and permeabilities of the primary coil substrate

Wireless Power Transmission (WPT) 2

coil distance

15 cm \(\mu=1 \)

40 cm \(\mu=40 \)

Magnetic field distribution for different coil distances and permeabilities of the primary coil substrate
Inductors for Power Conversion

- Power inverters used to convert energy for applications such as WPT, photovoltaic and UPS require large chokes. MAGMENT allows to make these components with unprecedented performance/cost ratio. This is a valuable contribution to the economical viability of large scale WPT.
Thank you!

Mauricio Esguerra
CEO and co-founder
Leonhardsweg 4
D-82008 Unterhaching
+49 89 6328 6064
mauricio.esguerra@magment.de

magment.de