EV WIRELESS CHARGING DEMAND ANALYSIS FOR VARIOUS TRAFFIC PATTERNS AND ENVIRONMENTS

A simulation based study.

Authors: T. Theodoropoulos, Y. Damousis, A. Amditis (ICCS / I-SENSE)
J. Sallán, H. Bludszuweit (Universidad de Zaragoza)
Electromobility or electric mobility or e-mobility is the propulsion of vehicles using electricity instead of conventional fuel.
WHY ELECTROMOBILITY?
SOCIAL BENEFITS

Environmental benefits:
- Minimization of vehicle produced air pollutants
- RES-produced energy, consumed by EVs maximizes benefits
WHY ELECTROMOBILITY?

SOCIAL BENEFITS

- Societal benefits:
 - Cleaner city air > better quality of life, reduction of hospitalizations
 - Quieter vehicles

- Large-scale economic benefits:
 - Industrial and employment boost
 - Reduction of climate change catastrophic phenomena, that cost billions
WHY ELECTROMOBILITY?

GRID BENEFITS

- Utilization of the vehicles as distributed energy storage, opening new horizons in decentralized energy storage and management;

- Renewable energy sources integration to the transportation and greater penetration limits since EVs may provide a huge energy buffer > increased grid stability;
WHY ELECTROMOBILITY?

GRID BENEFITS

- Bi-directional power transfer making the operation of the smart grid more secure and flexible. Each EV can be considered as a decentralized energy storage system;

- Reduction of energy market costs via supply/load shaping.
The future of EV charging: Wireless

- Allows EV charging while travelling (dynamic) or during short stops ideal for urban environment (stationary)

- Drivers do not have to deal with dirty and potentially dangerous cables (rain, cable vandalism, cable wear, etc); the charging process is easier

- Increased range
- Smaller batteries
- Increased mobility
- No visual pollution

- Reduced range anxiety
- Cheaper EVs
- More comfort
- Safer

Driver benefits

ITS and Smart Cities 2014
THE FABRIC project: FACTS

Coordinator
Angelos Amditis, Institute of Communication & Computer Systems, a.amditis@iccs.gr

Consortium

Supported by:

Duration 48 Months
DG / Unit Research and Innovation
Budget 9 M€
Funding 6.5 M€

This project has received funding from the EU’s FP7 for research, technological development & demonstration under GA no 605405

www.fabric-project.eu

ITS and Smart Cities 2014
DYNAMIC WIRELESS CHARGING

- Charging process
 - Vehicle authorization
 - Charging profile negotiation
 - Power transfer while vehicle over the pads
 - Billing, payment, etc...
How does this procedure affect the power grid? (What kind of power demand patterns are generated)

Which parameters affect transmitted power in a macroscopic scale?
SIMULATION METHODOLOGY

Parameters:
1. Charging lane/pad length.
2. Vehicle speed
3. Traffic.
4. Maximum charging pad power level

Charging events are created according to traffic, pad/lane length.
Charging events are translated to a power level according to the vehicle’s speed and pad length.

Power (MW)

Time

Source: SAET

ITS and Smart Cities 2014
SCENARIOS AND OUTCOME (1/8)

- Coordinated charging scenario:
 - Vehicles gradually enter and exit the charging lane. (platoon)
 - Vehicles stay in the charging lane without overriding or skipping any charging pads.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length of the road</td>
<td>8</td>
<td>km</td>
</tr>
<tr>
<td>Average slope</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Length of charging zones</td>
<td>30</td>
<td>m</td>
</tr>
<tr>
<td>Distance between charging zones</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>Power per unit of length</td>
<td>50</td>
<td>kW/m</td>
</tr>
<tr>
<td>Minimal technical headway in CWD lane</td>
<td>3</td>
<td>s</td>
</tr>
<tr>
<td>Vehicle speed</td>
<td>36</td>
<td>Km/h</td>
</tr>
<tr>
<td>Number of vehicles</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
 Outcome:

- Demand pattern is grid friendly.
- No variations or spikes imply fewer requirements on grid infrastructure! (Less smoothing, load balancing, etc...)
Non-Coordinated charging scenario (36km/h-5m min headway):

- Vehicles could enter the charging lane at any point of it!
- Vehicles are free to override, stay on the lane as long as they desire!

36km/h

5 meters min

Source: SAET
SCENARIOS AND OUTCOME (4/8)

Outcome:
- Non-coordinated charging causes demand fluctuation. Investment in energy systems is required in order to “smooth” out demand patterns.
Non-Coordinated charging scenario (108km/h-10m min headway)

- Impact of higher speed on demand is assessed
- Vehicles leave more space when they go faster, so headway has been adjusted accordingly

108km/h

10 meters min
Outcome

- Higher speed leads to less demand as vehicle density decreases (headway increases)
- Less demand variation in comparison to the slow speed case.
24h charging pattern

- Traffic based on data provided by the NHTS. (2009 survey)
- Scenario based on the hypothesis that there is an analogy between the overall traffic and the traffic that flows over a charging lane.
Outcome

- There is a natural coordination mechanism between the demand of a charging lane and solar irradiance
- Attractive self consumption scenario!
SUMMARY (1/2)

- Coordinated charging schemes could lead to less infrastructure for demand smoothing. However, the following are required:
 - Enforcement of policies
 - Infrastructure that enables platooning and vehicle co-ordination
SUMMARY (2/2)

- Speed and vehicle density has a big impact on demand patterns and therefore the design of the energy system infrastructure
 - Detailed modeling required in order to enable a pro-active infrastructure design
- Use of solar energy for self consumption is an attractive solution in partially covering demand during day-light, especially in southern European countries.
ACKNOWLEDGEMENT

“This work was also supported by the European Commission under FABRIC, a collaborative project part of the FP7 for research, technological development and demonstration (Grant Agreement NO 605405). The authors would like to thank all partners within FABRIC for their cooperation and valuable contribution”.

FABRIC
Katia Paglé,
ICCS Researcher
Project Manager @ I-SENSE
✉ katia@iccs.gr
📞 +30 210 772 2466

9, Iroon Polytechniou, 15773, Zografou - Athens, Greece
🌐 http://i-sense.iccs.gr/