Feasibility analysis and development of on-road charging solutions for future electric vehicles

FABRIC overview

Dr. Angelos Amditis, Research Director, ICCS, FABRIC Coordinator

Electromobility trends (I)

Electric Vehicles
Range increases due to battery breakthroughs
New models
Global adoption increases steadily

Infrastructure
Static charging infrastructure is deployed fast
Very fast supercharger deployment (>250km range in 20 minutes)

Batteries
EV batteries’ price dropping
Battery density increases linearly

FABRIC Conference, Brussels
Electromobility trends (II)

Investments on dynamic charging technologies

- UK government £500 million investment over the next five years for the creation and testing of electric highways.

- EU R&D project funding focused on dynamic charging
 - FABRIC
 - FASTINCHARGE
 - ...

2/2/2016
FABRIC Conference, Brussels
Objective: to develop, test and evaluate the efficiency of dynamic wireless charging prototypes to assess the feasibility of large-scale deployment of dynamic wireless charging.
FABRIC technical objectives – charging prototypes

Objective: Develop three different **dynamic** charging prototype solutions to assess their efficiency and compare with existing solutions

Status: Design complete, development ongoing
- Vedecom/QUALCOMM solution: 85kHz, 20kW
- POLITO solution: 20-200kHz, 20kW
- SAET solution: 80-100kHz, 50kW

Air gaps ~20cm

Expected delivery: Early 2016 (charging pads ready for test sites)
Objective: Create charging “lanes“ >100m to test the functionality and efficiency

Status: On-site civil works are on-going in Italy (Torino) and France (Satory)

Expected delivery: Early-mid 2016 (charging lanes with embedded charging pads)
FABRIC technical objectives – grid infrastructure

Objective: Perform impact studies on the grid, adapt test sites’ micro-grid to support the tests

Status: Impact study complete:
- Power demand simulations for various traffic models (demand fluctuates from 2-8 MW in some milliseconds)
- Harmonics and power flow analysis at the test sites (max power Satory: 100 kW, SITAF: 45 kW, minimal adaptations needed, so as to simultaneously charge 2 vehicles)
- Integration of RES and Energy Storage study (ESS: larger energy storage capacity reduces daily demand peaks but is expensive)

Expected delivery: Early 2016 (grid adaptations at test sites completed)
FABRIC technical objectives – testing

French test site:
- VeDeCoM will implement Qualcomm IPT systems on the Satory test track and on electric vehicles provided by car makers
- 100 meters charging lane
- VeDeCoM will incorporate contributions from its members (Renault, Peugeot, et al)

Italian test site:
- Motor track, 700 meters long, located in Susa Municipalities
- Two paved lanes about 200m long equipped with embedded induction loops
- Can simulate toll collection system
- Smart grid interface including commercial and industrial (C&I) electricity meter
- POLITO and SAET inductive charging solutions will be tested
FABRIC – comparison with conductive solution

- Volvo heavy vehicles/cars test site in Hällered
- Test track for conductive electrical road tests (DC 750V)
- Test track is 435m long, electrified part of the track is 275m.
- Technology evaluation results
- Demo of the track and system
- EM emissions measurements
- Conductive charging technology benchmarking

E-road in Volvo testing site

Volvo truck with pantograph
A first feasibility study approach examined several large-scale deployment scenarios based on actors’ requirements and FABRIC deliverables.

<table>
<thead>
<tr>
<th>Deployment scenario</th>
<th>Preliminary feasibility assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metropolitan deployment for heavy freight vehicles</td>
<td>Possible, but strong policy involvement needed</td>
</tr>
<tr>
<td>Metropolitan deployment for buses</td>
<td>Feasible if enough incentives given</td>
</tr>
<tr>
<td>Metropolitan deployment for general light vehicles</td>
<td>Economic risks for stakeholders should be considered</td>
</tr>
<tr>
<td>Metropolitan deployment for service vehicles / taxi’s</td>
<td>Economic feasibility uncertain</td>
</tr>
<tr>
<td>International freight corridors</td>
<td>Feasible, some concerns on interoperability and legal agreements</td>
</tr>
<tr>
<td>Long-haul national freight corridors</td>
<td>Feasible but utilisation rates should be examined carefully</td>
</tr>
<tr>
<td>Short-haul freight corridors</td>
<td>Feasible</td>
</tr>
<tr>
<td>National deployment for general light vehicles</td>
<td>With the present conditions feasible is not a given</td>
</tr>
<tr>
<td>International deployment for general light vehicles</td>
<td>With the present conditions feasible is not a given</td>
</tr>
<tr>
<td>International deployment for all vehicles classes</td>
<td>Requires significant changes to reach feasibility</td>
</tr>
</tbody>
</table>
FABRIC—next steps

Major activities 2016

- Grid and road adaptations at the test sites – test sites ready for testing
- Vehicle systems integration – vehicles ready for testing
- ICT modules development – On-board and Off-board load and charging management algorithms
- Testing
- Comparison with other dynamic charging solutions (VOLVO-SCANIA)

Technical challenges

- Short range V2I communications
- Load balancing and charging management in real time
- No standardization for dynamic charging
- Vehicle alignment with the charging pads on the move
- Creation of unobtrusive and efficient UI
FABRIC – how to contact us

Website www.fabric-project.eu

LinkedIn group

Join the ERG

Coordinator: a.amditis@iccs.gr
Thank you!

Dr. Angelos Amditis,
Research director, ICCS
a.amditis@iccs.gr