Current status and outlook of stationary and dynamic wireless electric vehicle charging
Societal Trends Advancing The EV Market

Global urbanisation
70% of world’s population will live in cities by 2050
(World Health Organization 2014)

Infrastructure strain
Total global vehicles increasing from 1.1bn today to 2.5bn by 2050
(OECD Report 2012)

Air pollution
Legislation and fines for pollution
(Environmental Protection Agency – European Commissions)

Health costs
Urban outdoor air pollution is estimated to cause 1.3 million deaths worldwide per year
(World Health Organization)

EV Challenges
- Lack of Standards
- Limited Range
- Time to Charge
- Ease of Charging
Wireless EV Charging for a better driver experience
- Simple, effortless & convenient
- Automatic hands-free charging
- No cord to unplug, or steal
- Unaffected by Water, Ice & Snow
- Simple to package on EVs

Multiplicity of charging opportunities
- Charge little, often and everywhere
- Simple to Deploy, no street clutter
- Encourages intensive charging infrastructure
- Reduce battery size and EV cost

Interoperability is Key to Adoption and EV growth
WEVC: Required Competencies

IPT Magnetics & Power Electronics

Auxiliary: FOD, LOP, Positioning

Regulatory Compliance

Communication

Application - System integration

Standard
Qualcomm are involved in ISO and IEC to cover both the infrastructure and the vehicle standardization.
Standardization Areas and Constraints

SAFETY CONSTRAINTS –
- Thermal and RF
 - Foreign Object Detection
 - Living Object Protection
 - Circuit protection layers
 - System control

INTEROPERABILITY REQUIREMENTS–
- Common Operating Frequency
- Magnetic interoperability between vehicle assembly (VA) and ground assembly (GA)
- Vehicle to charger communications
- Default alignment mechanism
- Agreement on VA and GA positioning in parking bay

PERFORMANCE
- Power Levels (3.7, 7.4, 22kW)
- Efficiency
- Air gap (absolute and range) [Z1, Z2, Z3]
- Alignment tolerance
- Stationary, Semi-dynamic, Dynamic

COEXISTENCE –
- RF and EMC regulations
 - Vehicle Systems
 - Implantable Medical Devices
 - Communication Services

Vehicle Systems
Safety

Protection from foreign object heating and emissions

- **Foreign Object Detection**
 - Metallic objects heat in the HF field
 - Loop array used to detect objects

- **Living Object Protection**
 - Radar based monitoring
 - Virtual fence around high emission zone
3.7 & 7.4 kW Magnetic Pad Options

About 40% reduction in DD pad size for same performance as Circular pad

- Interoperability must be considered

3.7 kW: 250mm x 190mm

7.4 kW: 340mm x 270mm
Evolution From Stationary To Semi and Dynamic

<table>
<thead>
<tr>
<th></th>
<th>Stationary (*)</th>
<th>Semi & Dynamic (**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>85 kHz</td>
<td>85 kHz</td>
</tr>
<tr>
<td>Power Classes</td>
<td>3.7 / 7.4 / 22 kW</td>
<td>10/ 20 / 40 / 200 kW</td>
</tr>
<tr>
<td>Offset Tolerance (x/y)</td>
<td>±75 / ±100 mm</td>
<td>Not relevant / ±200 mm</td>
</tr>
<tr>
<td>Magnetics (vehicle side)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*): Based on worldwide standardization
(**: Proposal for FABRIC project (currently, there are no standards specifying requirements for dynamic charging)
Dynamic WEVC Charging

Challenges

- Compatibility with static charging standards
- Power distribution network topology
- Cost distribution between vehicle and base
- In road installation and maintenance
Driving adoption of new technologies for EVs: Qualcomm HALO WEVC

Enhancing the connected fan experience
Thank you

Follow us on: Facebook

For more information on Qualcomm, visit us at:
www.qualcomm.com & www.qualcommhalo.com